Modeling exceedances in extreme value theory:

foundations, regression, time series,

multivariate settings

Dani Gamerman
Departamento de Métodos Estatísticos - IM

Universidade Federal do Rio de Janeiro

VI COBAL, PUCP - Lima, 21 June 2019

Based on work with...

Richard Davis (RD)

Manuele Leonelli (ML)

Content

- Introduction
- Univariate model

Regression

Time series

Regime identification

- Multivariate model
- Conclusions

1. Introduction

Precise knowledge and predicting capabilities for extremes are fundamental in many disciplines:

- Environmental sciences
- Finance and actuarial science
- Engineering and reliability

Standard statistical methods do not guarantee precise extrapolations towards the tail of the distribution where little, if no, data is available \Longrightarrow extreme value theory (EVT).

1.1. Main approaches for EVT

1) Block maxima

Let X_{1}, \ldots, X_{n} be i.i.d and M_{n} their maximum.

If there exists sequences of constants $\left\{a_{n} \geq 0\right\}$ and $\left\{b_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=G(x) \text { and } G \text { is non-degenerate }
$$

then G is the d.f. of the generalized extreme value (GEV) distribution

$$
G(x \mid \sigma, \xi)= \begin{cases}\exp \left\{-\left[1+\xi\left(\frac{x}{\sigma}\right)\right]_{+}^{-\frac{1}{\xi}}\right\}, & \xi \neq 0 \\ \exp \left[-\exp \left(-\frac{x}{\sigma}\right)\right], & \xi=0\end{cases}
$$

2) Exceedances

For X in the domain of attraction of the GEV distribution

$$
\lim _{u \rightarrow x_{F}} \mathbb{P}(X>x+u \mid X>u)=1-G(x)
$$

x_{F} is the upper limit of the support of X
G is the d.f. of the generalized Pareto distribution (GPD):

$$
G(x \mid \sigma, \xi)= \begin{cases}1-\left[1+\xi\left(\frac{x}{\sigma}\right)\right]_{+}^{-\frac{1}{\xi}}, & \xi \neq 0 \\ 1-\exp \left(-\frac{x}{\sigma}\right), & \xi=0\end{cases}
$$

where $x>0, \sigma>0,\left[1+\xi\left(\frac{x}{\sigma}\right)\right]>0$.

3 different extreme regimes:
Frechet $(\xi>0)$; Gumbel $(\xi=0)$ and Weibull $\left(\xi<0\right.$; finite $\left.x_{F}\right)$

Graphical representation

Block maxima

Exceedances

This talk concentrates on exceedances
1.2. Standard approach for inference

- Pre-set the threshold and use only the data beyond it to estimate GPD
- Questions: what is its value? where does tail begin?
- Pickands (1975) suggests threshold as large as possible
- Too high threshold: few data points \rightarrow unreliable tail inference
- Too low threshold: too far from GPD \rightarrow biased tail inference
- Graphical techniques were introduced to set the threshold

Example: MRL plot - exceedance means increase linearly

Threshold determination: simulated data

Threshold determination: simulated data

Threshold determination: Leeds NO_{2} data

Alternative approaches

- Standard approach discards most of the data
- Relies heavily on graphical and unstable tools
- It makes sense to use all data instead of only extreme data
- This can be achieved in many ways but should:

1) be as flexible as possible in the bulk (outside the tail)
2) not pre-set threshold

A bit of history

- Frigessi et al. (2002): Mixture of Weibull for bulk and GPD for tail, with data dependent weights
- Bermudez et al. (2003): estimates bulk of the data based on the data frequency
- Tancredi et al. (2003): Mixture of uniforms for bulk and estimates number of observations in tail
- CB, HL \& DG (2004): Gamma for bulk and GPD for tail. The threshold is a parameter to be estimated
- McDonald et al. (2011): mixture of normals for bulk and GPD for tail

2. Univariate model: MGPD

Introduced by FN, DG \& HL (2012):

$$
f(x \mid \phi, \psi)= \begin{cases}h(x \mid \phi), & x \leq u \\ {[1-H(u \mid \phi)] g(x-u \mid \psi),} & x>u\end{cases}
$$

$g, G: G P D$ density, d.f.
h, H : mixture of Gamma densities, d.f.'s (non-parametric flavour)
ϕ : Gamma parameters
$\psi:$ GPD parameters

Graphical representation

Continuity constraints at threshold could be imposed but are not needed

Quantiles

Main interest of EVT: higher quantiles (beyond observed data)
The p-quantile q of mixture of Gammas (h) is given by

$$
p=H(q \mid \phi)=\sum_{j=1}^{k} p_{j} \int_{0}^{q} f_{G, j}(x \mid \phi) d x .
$$

The quantiles must be computed numerically
In MGPD model, the higher quantiles (beyond threshold) are

$$
q=\frac{\left(\left(1-p^{*}\right)^{-\xi}-1\right) \sigma}{\xi}, \text { where } p^{*}=\frac{p-H(u \mid \phi)}{1-H(u \mid \phi)} .
$$

Inference for MGPD

Bayesian approach is used

Priors must be carefully devised: threshold and identifiability

Castellanos and Cabras (2007): reference prior for GPD parameters

Posterior distribution is way too complicated
\rightarrow no analytic results can be extracted
\rightarrow Block MCMC is used

Higher quantile estimation: simulation results

	$\mathrm{u}=6$				$\mathrm{u}=9$				$\mathrm{u}=12$		
Quantile	T	$M G P D$	POT	T	$M G P D$	POT	T	$M G P D$	POT		
0.99	20.06	23.13	22.07	21.56	20.48	20.21	17.55	17.77	17.11		
0.999	65.21	53.19	42.68	51.49	41.44	38.06	37.30	31.59	28.54		
0.99999	419.44	314.54	130.58	319.43	191.20	116.41	211.45	319.09	72.86		

T-True quantile, POT- based on using DIP to determine the threshold.

Summary: $M G P D$ quantiles closer to true in 8 out of 9 simulations

Higher quantile estimation: real data results

	Espiritu Santo, Puerto Rico (in $\left.f t^{3} / s\right)$		
Prob	E	$M G P D$	$M G_{k}$
0.95	798	793.29	842.7
0.99	1360	1426.04	1398.8
0.999	2600	2677.56	2197.0
0.9999	$\mathrm{~N} / \mathrm{A}$	4612.30	3014.0
	Barcelos, Portugal (in $m m$)		
0.95	73.1	74.54	74.71
0.99	99.4	101.73	104.09
0.999	117.5	137.84	151.50
0.9999	143.5	171.41	233.00

$M G P D$ closer to empirical than $M G_{k}$ in 6 out of 7 situations

Regression (FN, DG \& HL, 2011)

Auxiliary variables $\left(x_{1}, \ldots, x_{p}\right)$ may help explaining extreme behaviour
\rightarrow regression in the form $g(u, \sigma, \xi)=x^{\prime} \beta$
Cabras et al. (2011): regress x on orthogonal σ and $\nu=\sigma(1+\xi)$

Application: monthly minima of cities in state of Rio de Janeiro

Full: minimum; Dashed: $5 \%, 1 \%, 0.01 \%$ and 0.00001% quantiles.

Time Series (FN, DG \& HL, 2016)
EVT frequently applied to time series setting, typically not acknowledged
Possibility: $(u, \sigma, \xi) \rightarrow\left(u_{t}, \sigma_{t}, \xi_{t}\right)$
Our proposal: dynamic model for temporal variation of $\left(u_{t}, \sigma_{t}, \xi_{t}\right)$

Application: return of Petrobras stocks 2000-2014

Absolute returns, 99.9999\% quantiles and maximum (if median $\xi<0$)
Grey area $=P($ finite maximum at $t \mid x)=P($ Weibull regime at $t \mid x), \forall t$

Regime identification (FN, DG \& RD, 2016)

So far, shape ξ assumed to vary continuously
Identification of 3 regimes \rightarrow probability mass at $\xi=0$ (Gumbel)

Applications: Puerto Rico river flows and Portugal rainfalls

$P($ Gumbel $\mid x)$: Esp. Santo $=0.61$; Barcelos $=0.69$; Grandola $=0.70$
Quantiles are similar, but mixture models add regime identification
3. Multivariate extreme model (ML \& DG, 2019)

Univariate setting: limiting distribution of block maxima is GEV

This distribution has known density expression.

Multivariate setting: GEV requires exponent or spectral measure.

These are typically not known and a number of options were proposed

Data above threshold is assumed to be extreme and used for inference

- Parametric:
- for the exponent measure (simpler but less flexible) Coles and Tawn 1991, 1994; Jaruskova 2009; Joe 1990
- for the spectral measure (computationally more intensive) Ballani and Schlather 2011; Boldi and Davison 2007; Cooley et al. 2010
- Nonparametric: for the spectral measure (Einmahl and Segers, 2009; Guillotte et al. 2011).
- Other theoretical justifications (Bortot et al. 2000; Heffernan and Tawn 2004; Ramos and Ledford 2009; De Carvalho and Davison, 2014; Wadsworth et al, 2017).

Which observations are extreme?

Asymptotic independence

Coefficient of asymptotic dependence

$$
\chi=\lim _{u \rightarrow 1} \chi(u) \text { where } \chi(u)=P\left(F_{1}\left(X_{1}\right)>u \mid F_{2}\left(X_{2}\right)>u\right) .
$$

for $X_{i} \sim F_{i}$, for $i=1,2$.
$\chi=0 \Rightarrow$ asymptotic independence
$\chi \in(0,1] \Rightarrow$ asymptotic dependence

Example: $X_{1}, X_{2} \sim \mathcal{N}, \operatorname{cor}\left(X_{1}, X_{2}\right)=\rho \neq 0$, then

$$
\lim _{u \rightarrow 1} P\left(F_{1}\left(X_{1}\right)>u \mid F_{2}\left(X_{2}\right)>u\right)=0 .
$$

Thus, normal distributions are asymptotic independent

Multivariate dependence assessed via pairs of r.v.
Bivariate GEV: $\quad \chi=0 \quad \Leftrightarrow \quad X_{1}$ and X_{2} are independent.
Because of this deficiency, models based on different theoretical justifications have started to appear (Heffernan and Tawn, 2004; Ramos and Ledford, 2009.

Coefficient of subasymptotic dependence

$$
\bar{\chi}=\lim _{u \rightarrow 1} \bar{\chi}(u) \text { where } \bar{\chi}(u)=\frac{2 \log P\left(F_{1}\left(X_{1}\right)>u\right)}{\log P\left(F_{1}\left(X_{1}\right)>u, F_{2}\left(X_{2}\right)>u\right)}-1
$$

$\bar{\chi}=1 \Rightarrow$ asymptotic dependence
$\bar{\chi} \in(-1,1) \Rightarrow$ asymptotic independence

Copulae

A copula C is a flexible tool to construct multivariate distributions with given margins. Let X_{1}, \ldots, X_{d} be r.v.s with d.f.s F_{1}, \ldots, F_{d}.

A copula C is a function $C:[0,1]^{d} \rightarrow[0,1]$ s.t.

$$
F\left(x_{1}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)
$$

- Sklar's theorem guarantees there always exists one such copula;
- C is a d.f. in $[0,1]$ itself;
- separate marginal and dependence modelling.

$$
f\left(x_{1}, \ldots, x_{d}\right)=c\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) f_{1}\left(x_{1}\right) \cdots f_{d}\left(x_{d}\right) .
$$

Elliptical copulae

C is often (a mixture of) elliptical distributions: (skew-)normal, (skew-)T.

Asymptotic behaviour:
(skew-)normal - asymptotic independence $(\chi(u) \rightarrow 0, \bar{\chi}(u) \rightarrow(-1,1))$
(skew-) T - asymptotic dependence $(\chi(u) \rightarrow(0,1), \bar{\chi}(u) \rightarrow 1)$

$$
\chi(u)
$$

$$
\bar{\chi}(u)
$$

Our approach

We propose a new approach for multivariate extremes that

- marginally utilize flexible extreme mixture models - MGPD
- exploit the flexibility of copulae to model dependence
- assess extreme dependence from the chosen copula
- formally utilize all data available

Joint multivariate modelling

Mixture of elliptic copulae with MGPD margins

$$
f(x \mid \cdot)=\sum_{i=1}^{r} \omega_{i} c_{i}\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) f_{1}\left(x_{1}\right) \cdots f_{d}\left(x_{d}\right)
$$

where f_{i} is MGPD, c_{i} is a copula density and $\sum_{i=1}^{r} \omega_{i}=1, \omega_{i} \geq 0$.

So for example if Gaussian

$$
f(x \mid \cdot)=\sum_{i=1}^{r} \omega_{i} c_{i}^{\text {gauss }}\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) f_{1}\left(x_{1}\right) \cdots f_{d}\left(x_{d}\right)
$$

where $c_{i}^{\text {gauss }}\left(u_{1}, \ldots, u_{d}\right)=\left|R_{i}\right|^{-1 / 2} \exp \left(-\frac{1}{2} y^{\mathrm{T}}\left(R_{i}^{-1}-I_{d}\right) y\right)$, with $y^{\mathrm{T}}=$ $\left.\left(\Phi^{-1}\left(u_{1}\right)\right), \ldots, \Phi^{-1}\left(u_{d}\right)\right)$.

Ascertainment of asymptotic independence

Few proposals separate extreme dependence from extreme independence
Our proposal: use $\phi(c)=P(v>c \mid x)$, where $v=$ dof of T copula
Ideally, $\phi>0.5$ indicates asymptotic independence

Asymptotic (in)dependent data: solid (broken) line $c=10$ seems to provide a reasonable choice

Simulation study - 1000 observations, 8 models

1) Asymptotically independent models

2G - Mixture of 2 Gaussian copulae with MGPD margins
SN - Skew Normal copula with MGPD margins
MO - Morgenstern copula with lognormal-GPD margins
BL - Bilogistic copula with lognormal margins
2) Asymptotically dependent models

2T - Mixture of 2 T -copulae with MGPD margins
SN - Skew-T copula with MGPD margins
AL - Asymmetric logistic copula with lognormal-GPD margins
CA - Cauchy copula with lognormal margins

Summary of estimation: asymptotic independent data

	2 G	SN	MO	BL
d.o.f.	$16.5(5.8,141.5)$	$28.9(10.2,135.8)$	$38.9(13.0,154.3)$	$13.0(4.0,157.9)$
ϕ	0.787	0.983	0.995	0.631
δ_{95}	$0.42(0.31,0.53)$	$0.38(0.27,0.49)$	$0.36(0.21,0.51)$	$0.18(0,0.65)$

- number of dof large, as expected with asymptotic independent data
- δ_{95} - asymptotic indicator (Huser \& Wadsworth, 2018), threshold 0.95
$\delta>(<) 0.5 \rightarrow$ asymptotic (in)dependence choice of threshold values did not matter here
- ϕ seems to behave well wrt δ

Summary of estimation: asymptotic dependent data

	2 T	ST	AL	CA
d.o.f.	$9.8(3.6,51.9)$	$5.6(3.9,9.3)$	$7.3(4.4,16.0)$	$0.9(0.8,1.1)$
ϕ	0.490	0.013	0.191	0
δ_{95}	$0.48(0.40,0.57)$	$0.48(0.42,0.55)$	$0.13(0,0.66)$	$0.60(0.53,0.69)$

- number of dof not large, as expected with asymptotic dependent data
- ϕ behaves very well (and ok for 2T copula with dof=7)
- ϕ behaves better than δ

Applications

Puerto Rico rivers

Puerto Rico rivers: 2492 observations
Leeds pollutants: 532 observations
1000 and 100 observations retained for predictions only

Applications

Puerto Rico rivers

Leeds pollutants

Puerto Rico rivers: 2492 observations, asymptotic dependence
Leeds pollutants: 532 observations, asymptotic independence
1000 and 100 observations retained for predictions only

Results: predictions of the 99.5\% quantile

	Empirical	Marginal	Joint	POT 90	POT 95	POT 97.5
Fajardo	$[1710,1800]$	1900	1865	1881	1940	1943
Espiritu Santo	$[1350,1380]$	1463	1388	1465	1450	1445
		$(1215,1886)$	$(1210,1663)$	$(1237,1896)$	$(1235,1869)$	$(1251,1791)$

Empirical quantiles obtained from test dataset
POT - Peaks over threshold method
Summary: Joint $>$ Marginal MGPD > POT

Results: exceedance probabilities $P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)$

Puerto Rico rivers			
$\left(x_{1}, x_{2}\right)$	$(720,730)$	$(900,780)$	$(1300,1100)$
Emp. Pred.	0.015	0.010	0.005
T	0.0175	0.0115	0.0044
EVD 90	0.0209	0.0141	0.0057
EVD 95	0.0214	0.0145	0.0058
EVD 97.5	0.0211	0.0154	0.0064
Bortot 90	0.0186	0.0122	0.0046
Bortot 95	0.0205	0.0135	0.0050
Bortot 97.5	0.0216	0.0153	0.0060
Ramos 90	0.0203	0.0135	0.0054
Ramos 95	0.0201	0.0136	0.0054
Ramos 97.5	0.0207	0.0149	0.0062

Leeds pollutants		
$\left(x_{1}, x_{2}\right)$	$(55,32)$	$(58,33)$
Emp. Pred.	0.020	0.010
G	0.0188	0.0104
EVD 90	0.0549	0.0405
EVD 95	0.0854	0.0607
EVD 97.5	0.0875	0.0635
Bortot 90	0.0161	0.0085
Bortot 95	0.0133	0.0071
Bortot 97.5	0.0099	0.0050
Ramos 90	0.0114	0.0052
Ramos 95	0.0122	0.0049
Ramos 97.5	0.0093	0.0034

Empirical probabilities obtained from test dataset
EVD - R package EVD (Stephenson, 2002); Bortot - Bortot et al (2000);
Ramos - Ramos \& Ledford (2009)
Summary: Our $>$ Bortot $>$ Ramos $>$ EVD

Maps of the predictive probabilities of joint exceedances

Puerto Rico rivers

Leeds pollutants

Predictive probabilities based on fitted dataset
Dots represent the test dataset

Results: asymptotic dependence

Puerto Rico rivers				
d.o.f.	ϕ	δ_{90}	δ_{95}	$\delta_{97.5}$
5.3	0.003	0.63	0.43	0.47
$(3.8,7.9)$		$(0.59,0.67)$	$(0.28,0.58)$	$(0.36,0.58)$

Leeds pollutants		
d.o.f.	ϕ	δ_{80}
26.2	0.93	0.14
$(7.7,133.2)$		$(0.02,0.26)$

small (large) dof for Puerto Rico (Leeds) confirm visual inspection
ϕ is very decided (also, confirms visual inspection of data)
δ seems undecided for Puerto Rico

Coefficients of asymptotic dependence

Puerto Rico rivers Leeds pollutants

$$
\chi(u)
$$

Confirming asymptotic (in)dependence in Puerto Rico (Leeds)

Does bulk bias the estimation of tail?

Posterior mean (and 95% C.I.) of the dof of the T model and ϕ estimated using only extremes

	Mean	95% Int.	ϕ
Puerto Rico	9.89	$(2.70,45.53)$	0.25
Leeds	21.57	$(2.74,107.89)$	0.55

Posterior means (and 95\% C.I.) for χ (Puerto Rico) and $\bar{\chi}$ (Leeds).				
	Puerto Rico rivers: χ		Leeds pollutants: $\bar{\chi}$	
Full dataset	$0.45(0.39,0.50)$		Full dataset	$-0.13(-0.21,-0.04)$
Extreme points	$0.43(0.35,0.51)$		Extreme points	$-0.23(-0.48,0.08)$

Summary: Bulk did not bias results; only decreased uncertainty

4. Conclusion

- Our approach is flexible, uses the full data information and does not underestimate uncertainty
- Many extensions beyond bivariate case are available

Vine copulae may be a possibility

- Modeling dependence separately for bulk and tail

Main concern is the computational effort

- Regression, time series, etc can be brought to multivariate scenery

Main references

MGPD: FN, DG \& HL (2012).
A semiparametric Bayesian approach to extreme value estimation
Statistics \& Computing, 22, 661-675.

Regression: FN, DG \& HL (2011), EES.
Time Series: FN, DG \& HL (2016), Test.
Regime Identification: FN, DG \& RD (2016), BJPS.

Multivariate extremes: ML \& DG (2019).
Semiparametric bivariate modelling with flexible extremal dependence
Statistics \& Computing, to appear (available online).

Gracias!

dani@im.ufrj.br

www.statpop.com.br

